Send The Warrior Angels Dear Lord!

Send The Warrior Angels Dear Lord!
Victory For The Lord And His People

Saturday, September 11, 2010

Symmetry Is Huge!

I've been studying physics and science desperately to figure out how to prove (if only to myself) that the beings I have been getting photos of are real, living beings of energy! And the Quantum piece caught my attention quickly, as so many of these beings seem to 'overlap'. do I find a physicist who would help me and measure these dudes from the pictures? Is it possible? Doggedly I am tracking on. Here is one of the many pixs I have gotten from them. Of them...

Quantum objects
Remarkably, there exists a realm of physics for which mathematical assertions of simple symmetries in real objects cease to be approximations. That is the domain of quantum physics, which for the most part is the physics of very small, very simple objects such as electrons, protons, light, and atoms.
Unlike everyday objects, objects such as electrons have very limited numbers of configurations, called states, in which they can exist. This means that when symmetry operations such as exchanging the positions of components are applied to them, the resulting new configurations often cannot be distinguished from the originals no matter how diligent an observer is. Consequently, for sufficiently small and simple objects the generic mathematical symmetry assertion F(x) = x ceases to be approximate, and instead becomes an experimentally precise and accurate description of the situation in the real world.
Consequences of quantum symmetry
While it makes sense that symmetries could become exact when applied to very simple objects, the immediate intuition is that such a detail should not affect the physics of such objects in any significant way. This is in part because it is very difficult to view the concept of exact similarity as physically meaningful. Our mental picture of such situations is invariably the same one we use for large objects: We picture objects or configurations that are very, very similar, but for which if we could "look closer" we would still be able to tell the difference.
However, the assumption that exact symmetries in very small objects should not make any difference in their physics was discovered in the early 1900s to be spectacularly incorrect. The situation was succinctly summarized by Richard Feynman in the direct transcripts of his Feynman Lectures on Physics, Volume III, Section 3.4, Identical particles. (Unfortunately, the quote was edited out of the printed version of the same lecture.)
"... if there is a physical situation in which it is impossible to tell which way it happened, it always interferes; it never fails."
The word "interferes" in this context is a quick way of saying that such objects fall under the rules of quantum mechanics, in which they behave more like waves that interfere than like everyday large objects.
In short, when an object becomes so simple that a symmetry assertion of the form F(x) = x becomes an exact statement of experimentally verifiable sameness, x ceases to follow the rules of classical physics and must instead be modeled using the more complex—and often far less intuitive—rules of quantum physics.
This transition also provides an important insight into why the mathematics of symmetry are so deeply intertwined with those of quantum mechanics. When physical systems make the transition from symmetries that are approximate to ones that are exact, the mathematical expressions of those symmetries cease to be approximations and are transformed into precise definitions of the underlying nature of the objects. From that point on, the correlation of such objects to their mathematical descriptions becomes so close that it is difficult to separate the two.

About Me

My photo

Politics have become a religion, I am NOT interested.

Better than T.V.


Blog Archive